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Abstract—This work investigates a random access (RA) game for a
time-slotted RA system, where IV players choose a set of slots of a frame and
each frame consists of M multiple time slots. We obtain the pure strategy
Nash equilibria (PNEs) of this RA game, where slots are fully utilized
as in the centralized scheduling. As an algorithm to realize a PNE (Pure
strategy Nash Equilibrium), we propose an Exponential-weight algorithm
for Exploration and Exploitation (EXP3)-based multi-agent (MA) learning
algorithm, which has the computational complexity of O(NN?Z  T).
EXP3 is a bandit algorithm designed to find an optimal strategy in a multi-
armed bandit (MAB) problem that users do not know the expected payoff
of each strategy. Our simulation results show that the proposed algorithm
can achieve PNEs. Moreover, it can adapt to time-varying environments,
where the number of players varies over time.

Index Terms—Multi-armed bandit, nash equilibrium, non-cooperative
game, random access.

I. INTRODUCTION

As applications of the Internet-of-Things (IoT) devices become
popular such as smart home, health care, and smart cities, the uplink
random access (RA) system is important for a large number of IoT
devices to transfer their data [1], [2]. In particular, since numerous
IoT devices rarely and randomly generate small-sized packets, a coor-
dinated resource allocation for each session incurs a large overhead
of signaling. Thus, data transmission via RA seems reasonable in
terms of transmitted data packets per signaling overhead [3]. However,
collisions by simultaneous transmissions from multiple [oT devices and
idleness of the channel without a single transmission are unavoidable
in RA systems. This eventually results in throughput degradation.
Accordingly, it is essential to design a retransmission algorithm for
IoT devices to employ in order to maximize the throughput in the long
run.

This work formulates a time-slotted uplink RA system as a RA
game, where NV IoT devices (or players) are interested in choosing
a conflict-free slot in a frame of M slots. In the RA game, a frame is
further divided into a number of subframes so that the players choose
an action consisting of two parameters. One parameter is the size of
a subframe (in slots) and the other is a slot in a subframe, to which
the players transmit their packet. We derive the pure strategy Nash
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equilibria (PNEs) and mixed strategy Nash equilibrium (MNE) of the
RA game, where each player among a total of N players chooses his
own slot in a subframe of k slots. In this RA game, the players and the
access point (AP) do not have the information on the number of players
in the system a priori, and the number of players can even vary over time.
However, we assume that the information on the minimum and the max-
imum number of contending players is available as a coarse estimation.
Furthermore, we assume that the players do not cooperate nor com-
municate with each other and only the channel outcome at each slot is
available.

As an algorithm for the players to deploy in order to realize PNEs
while the exact population size N is not available, we propose a multi-
agent learning algorithm based on the Exponential-weight algorithm
for Exploration and Exploitation [4] (EXP3) for the multi-agent multi-
armed bandit (MAB) problem, where an action of our RA game can be
viewed as an arm for each player to pull. The simulation results show
that the proposed algorithm achieves better throughput than e-greedy [5]
and upper-confidence bound (UCB) [6] in various scenarios, and can
adapt to environmental changes.

In addressing some advantages of the game-theoretic approach, let us
recall that in slotted RA systems, slotted ALOHA (S-ALOHA) and the
splitting algorithms are frequently considered. In S-ALOHA system,
a backoff algorithm for retransmitting a collided packet is based on
random retransmission; that is, either a retransmission probability for
each slot or a window-based backoff algorithm, e.g., exponential or
uniform backoff window, can be used. If a retransmission probability,
say p, in S-JALOHA systems is controlled such that an opportunity of
slot use is evenly distributed over NV users, i.e., p = #, its maximum
throughput of 0.368 (packets/slot) can be achieved for large N. On the
other hand, in splitting algorithms, a sequence of retransmissions is
determined based on a coin-toss by users, which forms a tree. Over
time, collisions from the last leaf to the root are resolved. So far,
the first-come-first-serve (FCFS) splitting algorithm is known the best,
which can achieve 0.487 (packets/slot), while there may be a possibility
of deadlock [7]. In comparison, the RA game formulation enables us
to design a learning algorithm for the users (or players); that is, the
players learn a throughput-optimal action as a favorite over time. This
eventually converges to PNEs in the RA game. We shall see that the
system with the optimal action behaves like a genie-aided time-division
multiple access (TDMA) system, where all users are scheduled without
a collision by an omniscient genie.

The prior work can be summarized as follows:

1) Game Theoretical Approaches for Random Access: The random
access system has been modeled as a game in several papers [8]-[10],
which characterized NEs in several game models for random access.
In [8], the mixed strategy is characterized based on the reward and cost in
the S-ALOHA game. It is found that the maximum throughput of 0.368
is achieved at the MNE:s. In [9], the MNEs were found in the S-ALOHA
game, where players calculated their transmission probabilities and
announced them to other players. In addition, MNEs is obtained in [10],
when the mixed strategy is the transmission probability as a function
of collision cost.

2) Multi-Agent Multi-Armed Bandits: In [11], [12], the decentralized
multi-user MAB is studied in the system, where users do not cooperate
or communicate with other users and do not know the collision informa-
tion. Particularly, a logarithmic regret is achieved in [11] if every user
knows the exact number of users inside the system. The near-optimal
throughput in the cognitive radio network is obtained in [12], where
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users sense the channel before they choose their channel to transmit.
In this paper, users learn the best action by only observing the reward,
and our method achieves near-optimal throughput in our simulation
results.

3) User Estimation in the Cell: The estimating method of the users
inside the cell has been studied in [13]-[15]; the collision detection
history from the medium is collected for Kalman filter in [14]; un-
supervised neural network in [15], where the medium access control
address and received signal strength from the received packet are used
as a data set for an unsupervised learning algorithm to estimate the
number of users in [13].

4) Random Access Channel Procedure: There are several studies for
RA procedure in the I0Ts [16]-[19]. The collision resolution scheme is
proposed for adjusting the backoff indicator dynamically [16]. In [17],
a mathematical model is introduced for the narrowband IoT network
load to estimate and predict load changes. Dynamic binary countdown-
access barring (DBCA) algorithm for the dynamic load-adaptive algo-
rithm is proposed in [18]. [19] proposed three RA schemes that provide
ultra-reliable low latency communication access for IoT applications.

II. RANDOM ACCESS SYSTEM AS A GAME

A. RA System Model

In the RA system, time is divided into slots. Each slot is a constant
length, which corresponds to one packet transmission time. A total of
N players can (re)transmit their packets in a slot to the AP without
coordination. When only one player (re)transmits its packet in a slot,
its transmission is said to be successful. Just after each slot boundary,
the AP broadcasts the channel outcome such as success or failure
without an error. Notice that the AP and the players do not know the
exact population size IV, but we assume that the players can have the
minimum N,,;,, and the maximum N, of the population size.

Let us define a frame as a group of slots. It consists of M slots, which
is determined by the least common multiple (LCM) of Nyin, Nmin +
1,..., Nmax. These numbers will be used as the minimum and the
maximum lengths of a subframe inside a frame. For example, when
Npin = 3 and Ny, = 5, a frame consists of M = 60 slots. As in
the exponential backoff algorithm, where the minimum and maximum
window sizes are heuristically defined, Ny,;, and Ny, can play a
similar role in this system.

B. RA Game Model

The RA game is denoted by G = (N, (A,) nens (Tn)nen), Where
N ={1,2,..., N} denotes the set of players (or users) and A, is
the set of actions for player n to take. The payoff function of player
n is denoted by r,, : A — R, where A = A; X A, x --- x Ay is the
set of action vectors. An action a,, € A,, for the RA game is defined
as slot indices in a frame, to which a player transmits its packet. More
precisely, a frame is divided into subframes, each of which takes £ slots
for k € {Nmins Nmin + 1, - . ., Nmax - The number of subframes in a
frame is M /k. An action is characterized by a duplet (k, [), where k and
[ denote the length of a subframe and the slot index in a frame to transmit
a packet, respectively. Player n transmits its packet to the [-th slot of
every subframe. Notice that since a subframe consists of k slots for
kE € {Nmin, Nmin + 1, ..., Nmax}, | can take a value between 1 and
k. For example, when a player takes an action (k, [) = (4, 2) for a frame
of M = 420 slots, there are 105 subframes, and the player transmits
its packet to the second slot in every subframe of four slots. Then, a
total number of actions for player n to have are |A,,| = Zgi}?}:ﬂm Jé]
forn € N.
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Fig. 1. Example of the time slotted random access problem when N = 3.
TABLE I
THE PAYOFF MATRIX WHEN N = Npjin = Nmax = 3
Player 3: 1 Player 2
1 2 3
1| -C,-C,—C | -C,R,-C | —C,R,—
Player 1 | 2 R,—C,—-C —-C,—C,R R,R,R
3 R,—C,—C R,R,R —C,—C,R
Player 3: 2 Player 2
1 2 3
1| —-C,—C,R R,—C,—C R,R,R
Player 1 | 2 | —C,R, — —C,—C,—C | —C,R,—C
3 R,R,R R,—-C,-C —C,-C,R
Player 3: 3 Player 2
1 2 3
/1| -C,—C,R R,R,R R,—C,-C
Player 1 | 2 R,R,R —C,—C,R R,—C,—C
3 | -C,R,— —C,R,-C | -C,-C,-C

The mixed strategy of player n is denoted by s, = s,,(t) = (74,a €
Ay)suchthaty’  , 7, = 1, which is a probability distribution over
actions. In particular, a strategy s, is said to be a pure strategy if 7,,, =
1 for an action a,, € A,,. The payoff function of player n in each frame
is denoted by 7, (S5, S ), Where s_,, = (S1,. .+, Sp_15Sntly-- - SN)
denotes the strategies of all the players except player n. If player n is the
only transmitting player in a slot, it makes a successful transmission and
receives a positive payoff R for success in a slot. If more than one player
transmit packets, then a collision occurs so that these players receive a
negative payoff (or cost) —C,' e.g., wasted energy for a collision. Then,
it shall get its payoff in a frame as

Tn = Tn(Snv S—n) =1R - ]Ca (1)

where ¢ and j denote the number of successes and collisions in a frame,
respectively.

InFig. 1, we depict a system model of the time-slotted RA when N =
3 on the left, and the corresponding payoff of the three players on the
right. Table I shows a three-player game with Ny, = Nypax = N = 3.
The first table shows the payoft matrix when player 3 chooses the first
slot in every three slots. The slot index for players 1 and 2 to choose is
given in the column and row, respectively. The elements in each matrix
denote the payoff that players 1, 2, and 3 obtain, respectively.

III. GAME ANALYSIS AND ALGORITHMS

A. Game Analysis

We examine the PNEs of this RA game in Theorem III.1 and MNE
in Theorem II1.2, respectively.

Theorem 1I1.1: Consider the pure strategies of the players
(ai,...,ak), where a,, = (k,0,) forVn € N, k = N and o, is the

I'The priority between the players can be implicitly applied in our game model
by setting the different values of R and C' between the players in (1). In this paper,
we assume that the values of R and C' are equal for all players for simplicity.
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n-th element of a permutation from the set {1,..., N}. Accordingly,
o, denotes a slot index every N slots for player n. This is a PNE
in a frame so that there are N! PNEs. At a PNE, each player takes a
conflict-free slot of a subframe.

Proof: The PNEs in Theorem III.1 have k = N but a different [ for
player n € N. Hence, every player transmits to his own [-th slot in
every subframe and gets the payoff of R whenever it sends a packet
successfully. This is shown in a three-player game in Table I, where
every player gets the payoff of R.

If the other players follow a* ,,, and player n does not follow a;,,
player n always obtains a smaller payoff as he will experience a collision
if K > N, or receives fewer successes when & < N. Therefore, a], is
the unique best response strategy to player n and the pure strategies in
Theorem II1.1 form a PNE. There are V! possible choices of slot indices
for all the players to transmit without a collision. In Table I, we can see
six pure strategy NEs, i.e., 3!. Notice that the system throughput at these
PNEs is 1 (packets/slot) as centralized scheduling like TDMA. (]

Theorem I11.2: Let us assume that either (i) Ny, = N and R >
%C, or (ii) Nyax = N and R < %C, where Q = (1 — )V
Consider the mixed strategies of players, (s7,..., s} ), where each
st is the mixed strategy such that 7., = 1/N,V¥n € N for the pure
strategies ap, . . ., ay in Theorem Il 1, i.e., k = N,l € {1,2,...,N}.
This is a mixed strategy NE in each frame.

Proof: First, let us consider the condition (i). The proof for the
condition (ii) is similar and omitted. The mixed strategy of each player
in Theorem III.2 chooses the strategies used in Theorem III.1 with
probability % and does not play other strategies. The expected payoff
for each player following the strategies of Theorem II1.2 is

N M M
rn(sn,sfn)fQXNR (1 Q)XNC,VTLGN, 2)

where @ is the probability that all other players remain idle (i.e.,
do not transmit any packets). When each player chooses an action
(N, 1) for I = {1,2,..., N} with probability 3-, the probability that
the other players do not choose the action that player n chooses is Q) =
(1- % )N-1. Consider any player n while the other players follow s* ..
If the player n chooses an action (k, 1), the expected payoff of player
n can be expressed by replacing N to k in (2). Since N = Ny,;,, and
R> % C, the actions with kK = N,;,, have the highest expected pay-
off as in (2). Thus, the player n’s expected payoff is equal to or smaller
than (2). The mixed strategy s;, is one of each player’s best response
strategies for the other players’ strategy s* ,, . Notice that the throughput
of this mixed strategy NE is (1 — )" ~!, which is equivalent to the
optimal throughput of S-ALOHA with access probability % ]

B. Proposed Algorithm

In order for the players to realize the PNEs of this RA game, we
propose an EXP3-based multi-agent (EXP3-MA) learning algorithm.
In general, EXP3-MA solves MAB problems by exploring the arms
(here actions) in a way of getting the maximum payoff over time; that
is, the EXP3-MA can realize PNEs after a sufficient learning period.
Notice that each action available at the players corresponds to an arm of
MAB. Beside EXP3-MA, two other algorithms such as e-greedy and
UCB algorithms can be exercised for MAB problems. However, the
EXP3 algorithm is preferred since it achieves an order-optimal regret
bound in single-agent adversarial bandit problems [20], compared to
e-greedy, and UCB algorithms. We present how these algorithms are
applied to our RA game after expounding the EXP3-MA algorithm and
compare the performances of three algorithms in Section I'V.

EXP3-MA algorithm works as follows: In every frame ¢, each player
n € N calculates the probability of choosing action a denoted by
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Algorithm 1: EXP3-MA.

1 Initialize: ¢, (1) =0,Yn e N, a € 4,
2 fort=1,2,...,T do

3 for n=1,2,....N do
4

_ exp (1gn,a (1))
pn,a,(t) == ea, ©XD ("lqn,a’(t)) , Va S An

a,(t) = a with probability p,, 4 (t).

5
6 end

7 forn=1,2,....,N do

8 Receive payoff 7, (a,(t), a_n,(t)).

9 Calculate r,,(t), estimated payoffs of actions as

in Eq. (3).
10 for a € A, do
n ‘ Gna(t +1) = gna(t) + Fra(t).
12 end
13 end

14 end

Dn.a(t), and samples an action a,, (¢) from the probability distribution
P, (t) = {pn,1(t),. .. ,Pn,a,(t)}, shown in lines 4 and 5 in Algo-
rithm 1. In line 4, g, (t) indicates the total estimated payoff of a
up to frame ¢, which shall be updated at the end of each frame. It is
notable that p,, 4 () is a function of q,, o(£), and } 0, 4 Pn.a(t) = 1,
while it is also an exponential weighting function. The function of
Dn.a(t) allows P, (t) to quickly increase the probability of choosing
an outstanding outcome while rapidly reducing the probability of poor
ones, for all actions a € A,, tuned by parameter 17 > 0. For a large 7,
Dn.o(t) concentrates on an action with the largest estimated payoff,
which can be said that the action is exploited aggressively by player n.
For a small 7, p,, . becomes more uniform across actions so that player
n can explore the actions evenly.

After playing the RA game according to their actions, all the players
get a payoff r, (a, (t),a_,(t)) in line 8 of the Algorithm 1 at the end
of the frame ¢. Then the players calculate an estimated payoff vector,
denoted by t,,(t) = {#n,1(t), ..., n, 4, (t)} for all actions, in line 9
of the Algorithm 1 as follows:

T (an (t)7 a_n(t)) ﬂ{an (t)=a}
pn,a(t)

where 1{,,, (1)=q) is the indication function that becomes 1 if a,, (t) = a;
otherwise, zero.

Without dividing 7, (ay,(t), a_,(t)) by pn.(t) in (3), it can be
expected that an action with a very low p,, ,(t) is less likely chosen.
To avoid this, the payoff r,, is divided by p,, ,(¢). This also guarantees
that the conditional expectation of the estimated payoff associated with
any fixed action a,, () = a is equal to the actual payoff; that is,

7an(t - 1)} = Z 'ﬁn,a(t) : pn,a’(t)

, Va € Ay, 3)

fn,a(t) =

Ei1[fn,a(®)]an(l),...

aeAy
- 72n,a(t) . pn,a(t) = Tn(an (t)7 a,n(t)). (4)
While a,,(¢) is randomly chosen according to p,, o(t), Pn,a(t) is
influenced by the past actions made, a,,(1),...,a,(t — 1) [21]. Con-

sequently, 7, ,(t) also gets influenced by a,, (1), ..., a,(t) as p, 4 (t)
is used to calculate 7,, ,(t). Hence, the expectation of 7, ,(t) is taken
with respect to a,, (1), ..., a,(t). Since we fixed the action a,,(t) = a,
the only non-zero estimated payoff is 7,, ,(¢) # 0, and the rest of the
estimated payoffs for other actions are 0. Therefore, ) /. A, Pra(t)
Do () becomes 7, o(t) - pp,q(t), and from the definition of 7, 4 (%),
Pra(t) - Pn,a(t) = rp(an(t), a_n(t)). Furthermore, (3) is an unbiased

Authorized licensed use limited to: Hanyang University. Downloaded on October 05,2022 at 04:52:11 UTC from IEEE Xplore. Restrictions apply.



9122

estimate of the payoff, which means that expectation of 7, , (t) is equal
to 7y, (an (t),a_n(t)) as shown in (4). Hence, (3) is used to estimate
the payoff of action a. In line 11 of the Algorithm 1, 7,, ,(¢) will be
added to ¢y, ,(t) at the end of frame ¢ such that the player n’s total
estimated payoff until frame ¢ is defined as g, o (t) = 32", 7 o (7).
Then, g, +(t) of an optimal action a* with the highest average payoff
grows faster than other non-optimal actions, which in turn maximizes
the probability to choose this optimal action, p,, 4+ (¢). In each frame,
each player calculates the probability of each action and selects a
transmission policy in lines 3~6. We know that the total number of

action for each playeris A = > ;\* 4, and therefore the maximum
=Nnin

(Nmax +Nmin) NVmax—Nmin+1) _

> =

number of actions for each player is
O(Nmax(Nmax — Nmin))- Hence, the computational complexity for
lines 3~6 is O(N Npax(Nmax — Nmin))). Similarly, in lines 7~13,
the computational complexity is O(N Npax(Nmax — Nmin))) as
well. As a result, the computational complexity of Algorithm 1 is
O(NN2..T). In lines 1 and 4, there are two matrices ¢, , and
Dn,a VN € N, a € A,,. Thus, the maximum size of each matrix is
N(Nmax+Nmin)2(Nmax*Nmin+1) = O(N (Nmax(Nmax — Nmin)))- As
a result, the memory complexity of Algorithm 1 is O(NZ,.) for each
user. Note that each user only needs to store its own g, and p;, 4.

Finally, let us explain how the e-greedy algorithm and the UCB
algorithm work. These two algorithms can be implemented to the
EXP3-MA as an exploration strategy replacing the EXP3. In the
e-greedy algorithm, each player chooses an action with probability
€(t), say exploring, and chooses the best action observed so far with
probability 1 — €(t), say exploiting, at frame ¢ [5]. In our simulation,
we use €(t) = 7, where o is an exponent parameter.

The UCB algorithm is on the other hand based on the optimistic

principle [6]: It assigns a confidence bonus term ,/% to each
action, i.e., '

oo (D) &)

2log(1/6) }

an(t) = arg max, {Un,a(t) +

where K, ,(t) denotes the number of times that action a has been
selected by player n up to frame ¢ and 6 € [0, 1] is the error probability
and pu,, 4 (t) is player n’s empirical average payoff of a up to frame ¢. If
¢ is small, then the algorithm exploits the highest 11, , more. Otherwise,
it explores other actions more. UCB selects an action according to (5).

IV. SIMULATION RESULTS

Throughout this section, we use R =1 and C' =2 and set C' > R
to incentivize players to avoid collision. Each simulation run length is
10* frames, and 1000 simulations are averaged.

The sum throughput (packets/slot) of each frame obtained by EXP3-
MA algorithm is illustrated with different values of 1, when N = 3,
Niin = 3, Niax = 6 in Fig. 2(a) and N = 8, Npin = 6, Nyjax = 8
in Fig. 2(b). Note that as 7 gets larger, p,, . (¢) concentrates more on an
arm with a larger estimated payoff. Thus, in both Fig. 2(a) and (b), the
result with n = 0.1 is better than those with the other smaller n’s before
frame index does not pass too much, e.g., 100 in Fig. 2(a). Since the
algorithm with a smaller 77 explores more actions in the beginning, it
can converge to a better policy later, which results in a higher long-term
throughput.

In Fig. 3, EXP3-MA algorithm is compared to e-greedy, and UCB
algorithms. As we have seen, 1 is a tunable parameter of EXP3-MA
algorithm, on which the sum throughput may depend. For e-greedy and
UCB algorithms, « and ¢ are the tunable parameter, respectively. By
trying 1, «, and & of each algorithm over 10 frames in an interval
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Fig. 2. The average sum throughput (packets/slot) of EXP3-MA algorithm
with different values of 7. () N = 3, Nmin = 3, Nmax = 6. (b) N =8, Nmin =
6, Nmax = 8.
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Fig. 3. Sum throughput of EXP3, e-greedy, and UCB. (a) N = 3, Npin = 1,
Nmax = 3. (b) N =35, Nmin =4, Nmax = 6.
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Fig. 4. Average throughputs when a new active player joins the system at the
5000-th frame.
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Fig. 5. Average throughputs of players with different priorities (different
R/C) by EXP3-MA. (a) Average throughputs of players. (b) Throughputs of
players over time.

[104, 5] for 7, and [0, 1) for other parameters, we find the best value of
maximizing the sum throughput and use this value in Figs. 3, 4, and 5.

Fig. 3 compares the sum throughput of e-greedy, EXP3, and UCB
algorithms. It can be seen that the EXP3-MA algorithm outperforms
other algorithms because it achieves the best trade-off between ex-
ploration and exploitation. The e-greedy algorithm on the other hand
shows the worst performance because when an action with an optimal
payoffis found, the exploration of other non-optimal actions occurs with
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TABLE II
THROUGHPUT COMPARISON BETWEEN THE MAB ALGORITHMS OVER 103
FRAMES

Average throughput

N, Npin, Nmax EXP3 e-greedy UCB

4 2 4 0.915 0.8581 0.9075
4 2 7 0.9053 0.7388 0.7781
5 3 5 0.9429 0.8698 0.933

5 3 8 0.8455 0.7275 0.73

6 4 6 0.8977 0.8462 0.8585
6 4 9 0.8736 0.7219 0.8082
7 5 7 0.9312 0.8391 0.9147
7 5 10 0.8685 0.7313 0.7963
8§ 6 8 0.9006 0.8451 0.8458
8 6 11 0.8907 0.7329 0.8011

probability e every frame regardless of their average payoffs in history.
This results in slow learning. The UCB algorithm also performed no
better than the EXP3-MA algorithm due to how it chooses actions. If
the scenario is adversarial and the payoff varies over time as the other
players change their actions, the UCB algorithm struggles to estimate
the correct upper confidence bound and shows worse performance
than its performance in the fixed payoff distribution [5]. As the payoff
distribution of each player changes as the other players’ actions vary, the
system becomes non-stationary for each player. We summarize the av-
erage throughputs over 10° frames for various values of N, Ny, Ninax
in Table II. It can be observed that the average throughput of the EXP3
algorithm is better than the other MAB algorithms for all tested cases.
We check that when N <8, N — Ny, <2 and Ny — N <3,
EXP3 is better than e-greedy and UCB.

In practice, the population size changes over time. To see how
the proposed EXP3-MA algorithm and other MAB algorithms can
adapt to it, we vary N over time in Fig. 4, where N varies over
the 5000-th frame but NV,,;, and N,,.. are the same. The left half
of the figure (the first 5000 frames) shows the simulation results
before a new player joins the system, and the right half of the
figure (another 5000 frames) shows the simulation results after a
new player joins the system. To adapt to the environment, where a
population of players can vary, we use the discounting method of
discounted-UCB (D-UCB) in [22]. We calculate the empirical average
Py () = m Zi:l Y0 (8)1g,, (1)=a for both UCB and

the e-greedy algorithm, where f., ,, o (t) = >0, ¥ "1, (t)=a» and
v €[0,1) is the discount factor. For EXP3 algorithm, we modify
Gn,a(t) 10 Gy ma, () = Zi:l Y0 (t)a,, (t)=a- We use v = 0.6.

Initially, the simulation starts with N = 5, Ny,;, = 4, and Ny, =
7. At the 5000-th frame, a new player joins the system and /N becomes
6. As the new player starts its MAB algorithm and transmits packets,
the other players do not receive the same payoff distributions that they
have received before the new player joins. Therefore it can be seen in
the right figure that the throughputs of all algorithms drop right after a
new player joins the system. However, the simulation results show that
even if the number of players increases, the MAB algorithms can learn
the environment and increase the throughputs gradually. In this case, the
performance of EXP3 algorithm outperforms both UCB and e-greedy
algorithms. This shows that our proposed learning algorithm can adapt
to a time-varying environment better than other MAB algorithms.

We also show that the RA game can apply different priorities to
each player in an implicit way by modifying the parameters of each
player’s payoff function. A player who has higher priority than the other
players should have a higher R/C than the other players to send packets
aggressively. Fig. 5 presents the simulation result of implementing
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the priority among the players with N =3, Ny = 2, Nypax = 5.
We set R =4,C =0 for player 1, R =2,C = 2 for player 2, and
R =1,C = 4 for player 3. It can be seen that the player with higher
priority achieved higher throughput than those with lower priority as
shown in Fig. 5(a).

V. CONCLUSION

In this paper, we formulated slotted RA system as a RA game. Each
frame of M slots was divided into k subframes, each of which has
M /K slots. The actions for the players to choose were expressed as
(k,1), where [ is the slot index of a subframe. Without the players
communicating or cooperating with other players, it was shown that
this RA game has PNEs and MNE in terms of the size of a subframe
and a slot index when the minimum and maximum of the population
size were available. In order to realize the PNEs, we proposed the
EXP3-based multi-agent learning algorithm for the players to exercise.
Our simulation results showed that each time slot can be fully utilized
at PNEs, and that EXP3-MA algorithm obtained throughput better
than e-greedy and UCB algorithms and can adapt to time-varying
environments.

In contrast with the results, this work has some limitations due to
analytical complexity and the assumptions we made. Although the
parameters of the proposed algorithms are tuned for a fair comparison,
it is not clearly shown how to set the parameters such as 7 and ~ for
given N, Npin, Nmax. Furthermore, it is hard to give a guideline for
selecting an optimal ~ for general problems, which is still an open
problem [23], [24]. Also, we will mathematically analyze the upper
bound of the regret in the EXP3-MA algorithm, and the convergence
rate to the PNE that achieves the maximum throughput. Moreover, the
algorithm for estimating and calculating Ny,;,, and Ny, values will
be studied and implemented to the RA system model. Lastly, we will
extend the RA game model into a more realistic RA scenario with
multiple preambles.
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